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" ABSTRACT
D
it . . .
£l WOJTAK, DONNA, M. Observation of Gravity Waves during the
" Genesis of Atlantic Lows Experiment. (Under the direction
of Mark DeMaria.)
)
: This research was initiated as a direct result of the
l
i, . . A .
:i . Genesis of Atlantic Lows Experiment (GALE) which was con-
o ducted from 15 January to 15 Marcn 1986. ' The principle
o \
", objective of GALEA@as to study various mesoscale processes
:f and their role in cyclogenesis along the East Coast of the
«; United States. A supporting objective was to study the
o~ role of gravity waves in the organization of precipitation
Y
Y bands. - -
The three—day period from 4 to 6 February was chosen
»
}j for this study since ‘several mesoscale dlsturbances resem- )
" bling gravity waves passed through the data network A
= ’
o high-pass spectral filter was applied to the pressure,
L)
f' temperature, and wind fields to remove the diurnal and
L
() - ‘o :
é semi-diurnal trends. In this way,»the higher freguencies
Lo with periods of 8 hours or less could be isolated. * The
'f filtered data were plotted usinyg an onjective analysis
-, scneme which interpolated the data to an evenly spaced
N grid. A spatial filter was also applied to remove
‘: wavelengths less than twice the original station spacing.
b The horizontal divergence was calculated using the filtered pgp »
i wind field. T g
' o b
b Four gravity wave cases were identified from the sur-‘?°u a-*
ﬂ face pressure and divergence fields. Phase speeds ranged —
i from 20-40 m s~! with wavelengths from 200-400 km, and ’n/
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amplitudes of 0.25-2.0 mb. Precipitation was usually not
associated with the waves. The last case on 6 February,
which was the one most well-defined, did have a precipita-
tion pattern which followed its movement.

Further analysis was performed on each case using
sounding data. A comparison with linear gravity wave
theory suggests that the gravity waves were freely
propagating rather than a surface response to upper level
forcing. While the waves were not directly associated with

a frontal system, the Appalachian Mountains may have played

”, ’r— “ I .
a role in their formation. . ¢ “}v.
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1. INTRODUCTION

A linear analysis of the set of equations which
describe motions in the atmosphere reveals five wave
solutions. Two solutions describe sound waves and a third,
Rossby or planetary waves. The final two solutions detail
the motion resulting from gravity waves. It is the occur-
rence of gravity waves in the atmosphere which 1is the sup-
jJect of this research study.

Simply put, a gravity wave occurs in a stably
stratified atmosphere when a parcel of air undergoes
buoyancy oscillations about its equilibrium state (Holton,
1979). For this reason, gravity waves have often been
called buoyancy waves. But gravity waves are a complex
phenomenon which, when in the form of a mountain wave, can
cause severe clear-air turbulence (Hooke and Hardy, 1975).
When associated with cyclogenesis, gravity waves can aug-
ment the occurrence of precipitation (Gedzelman and
Rilling, 1978).

There have been many observations of gravity waves in
the atmosphere. Bosart and Cussen (1973) observed exten-
sive gravity wave activity in the southeastern United
States within the cold air north of a quasi-stationary
front during the period from 3 to 5 December 1968. The
gravity wave they studied had a 3.5 mb amplitude, a

propagation speed of 10 - 15 m s~1

and a life cycle of
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approximately 15 hours. Precipitation occurred to the east
of the eastward moving wave and ended after wave passage.
Bosart and Cussen concluded that thunderstorm activity was
the initial triggering mechanism.

Gossard and Munk (1954) observed gravity wave oscilla-
tions during seven days from April 1952 to May 1953 at La
Jolla, California. These oscillations had periods from 5

1 and

to 15 minutes, phase speeds of approximately 10 m s~
wavelengths from 4 to 10 km. Gossard and Munk found that
the oscillations occurred in conjunction with large
temperature inversions over the area and were often accom-
panied py fog or very low stratus. These conditions occur
in southern California when the area is under the influence
of a well-developed Pacific high pressure system.

Cunning {1974) observed gravity waves during a two

week period in October 1971 in the Miami, Florida area.

Amplitudes ranged from 0.4 mb to 1.0 mb and phase speeds

were approximately 30 m s, Cunning found that within

southern Florida, waves occur almost continuously regard-
less of time of day or year.

In these and other case studies (e.g., Bosart, 1973;
Donn et al., 1973; Herron et al., 1969) it has been shown
that gravity waves are observed with a wide range of
wavelengths, amplitudes, and phase speeds. Tihe one limit-

ing factor in these studies is that data were avallable

from just a few stations.
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Data used in this study of gravity waves were obtained
during the Genesis of Atlantic Lows Experiment (GALE)
(Hobbs et al., 1985). This multi-university, multi-agency
field experiment encompassed a two-month time period from
15 January to 15 March 1986. GALE had several objectives.
These were to: 1) describe the airflow, mass, and moisture
fields in East Coast winter storms with emphasis on mesos-
cale processes; 2) understand physical mechanisms control-
ling the formation and rapid development of East Coast
storms; and 3) develop and test numerical models for the
prediction of East Coast storms. A supporting objective
was to study the role of gravity waves as a mechanism in
the development of precipitation bands.

GALE provided an excellent medium to observe gravity
waves. The annual cycle of wave amplitudes in mid-
latitudes shows a peak from October through March
(Gedzelman, 1983). GALE took place during the latter part
of tnis time period. In addition, large amounts of data
were available for the entire two-month period. A network
of fifty Portable Automated Mesonet (PAM II) stations
extending from South Carolina to Virginia provided, among
other variables, pressure, temperature, wind speed and
direction, and rainfall data every 5 minutes. The PAM I1I
stations were approximately 60 km apart, providing a high

resolution data field.

Because of the vast amount of data available, the




three-day period from 4 to 6 February was chosen for this

research. This particular time frame was selected because
several mesoscale disturbances resembling gravity waves
passed through the data network. To isolate and analyze
these gravity waves, a high-pass spectral filter is applied
to the pressure, temperature, and wind fields. This
removes both the diurnal and semi-diurnal trends to isolate
the higher frequency oscillations with periods of 8 hours
or less. The filtered data are interpolated to an evenly
spaced grid using an objective analysis scheme (Barnes,
1964, 1973). A spatial filter is also applied (Shapiro,
1975) to remove wavelengths less than twice the original
station spacing. The horizontal divergence field is calcu-
lated from the filtered wind field using centered finite

differences.

From the analysis of the surface pressure perturbation
field and the horizontal divergence, four gravity wave
cases are identified. Phase speeds and wavelengths are
calculated directly from the plotted data. To further
study the four cases, sounding data are used to compare the
observed characteristics of the waves with linear gravity

wave theory. Synoptic data are also studied to determine

possibie origins of the waves.
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2. CURRENT THEORY

Gravity waves are thought to be prevalent throughout
the atmosphere. Atkinson (1981) states that gravity waves

can occur from the surface to heights above 20 km. Other

wave characteristics are also quite variable. Wavelengths
can range from 5 to 500 km, phase speeds from 10 to 50
m s™! and periods from minutes to hours.

Wave occurrence is often associated with vertical
stability and wind shear (Atkinson, 1981; Gedzelman and
Rilling, 1978). Both vertical stability and wind shear are

reflected 1in a calculation of the Richarason number (Ri)

given by:

____5%__ (2.1)

where g is the acceleration of gravity, 6 the potential
temperature, U the horizontal wind speed and z is height.
Atkinson (198l1) indicates that waves occur in layers where
the Richardson number is less than 0.50. Gedzelman and
Rilling (1978) related minimum Richardson number to wave
amplitudes (Figure 2.1). They indicate that the critical
Richardson number for large-amplitude waves is 0.25.
Gedzelman and Rilling also found that the waves tend to

move with the wind speed and direction at the level of
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. Figure 2.1 Wave amplitudes as a function of minimum
Richardson number in the sounding. The envelope indicates

4 tnat large-amplitude waves are not expected from shear
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Rilling, 1978).
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minimum Richardson number in the sounding.

In a stably stratified atmosphere, gravity waves can
propagate without vertical wind shear. The simplest system
of equations which includes this effect are the vertically
averaged equations of motion for a hydrostatic fluid

(Bannon, 1979). These equations can be written as:

du _ =g dh (2.2)
=22 - f = v
at M ?x
av ., s, - -9 oh (2.3)
at u dy
gh , hfau ,2v) _ O (2.4)
dt (3% dy
where g’ = g(l - 6,/65), (2.5)
and d - 2 4, w2 4+ V29 (2.6)
dt ot ox oy

In Equations 2.2 through 2.4, f is the Coriolis parameter
and h is tne fluid adepth. The above eguations assume that
the potential temperature (6,) is constant in a layer of

depth h with a potential temperature ¢, above this layer.

Assuming one-dimensional (?/2y = 0), non-rotating flow
(f = 0), a linear analysis of Equations 2.2 to 2.4 using
the perturbation method (Holton, 1979), results 1in the

equation for the phase speed, ¢, given by:

c = T + {gH[1- (6,76, I} /72 (2.7)

o
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oy ' wnere u 1s the wind speed in the layer and H is the mean

» depth of the layer.
A determination of whether a gravity wave is forced by

Q3

v . . . .

Y vertical wind shear or is freely propagating can help
)

o _ . .

o determine the origin of the wave. For instance, studies
L

X have been done relating the jet stream and gravity waves
>, (Donn et al., 1973; Herron and Tolstoy, 1969; Tolstoy and
M

w Herron, 1969; Mastrantonio et al., 1976). Topographic
L% et al

& features, convective activity, and frontal systems are also
.: possible mechanisms in the formation of gravity waves in
y

:, the atmosphere.
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- 3. DATA ANALYSIS TECHNIQUES

: 3.1 Portable Automated Mesonet System Data

.

'& Data used in this research study were obtained from
" the Portable Automated Mesonet (PAM II) System deployed
N during GALE (Figure 3.1). These stations extended from
N South Carolina to Virginia and were approximately 60 km
;E apart. The PAM 11 stations provided fifteen different data
N values every 5 minutes. The six parameters chosen for this
; study included pressure (mb), temperature (°c), dewpoint
;: temperature (°C), rainfall amount (mm) and the u and v com-
’. ponents of the wind (m s_l). For the purpose of this
-,

3 research, data at 10-minute intervals were used during the
i three-day observation period versus the 5-minute data
;: available. The primary reason for this was limited com-
‘5 puter disk storage space. By comparing plots of the 5-and-
.: 10 minute data, it was determined that the features of
> interest could be resolved witn the 10-minute data.

’,

_? 3.2 Preliminary Data Processing

¢ 3.2.1 Data Correction

.i For the three-day period, each day was processed as a
AN

,; separate data set. If a station had a data value missing
;: two Oor more times in a row, the station was not included in
Z calculations involving the particular parameter. If a
:; single value was missing, a replacement value was
:: g
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82w 8ow 78W W

N Figure 3.1 The 50 station PAM II network. Rectangular box
A eéncompasses Barnes analyzed grid. Sounding stations are
indicated by a small circle and three letter identifier.
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calculated by taking an average of the data value prior to

and following the missing one. For the endpoints of the
data set, a missing value was replaced by the preceding or
following value as appropriate. A station was also
eliminated from further processing if it contained
obviously erroneous data values. For any one day or data

parameter, five stations or less were eliminated.
3.2.2 Fourier Transform

In order to isolate the high frequency oscillations,
the data from each station were Fourier transformed in
time. Before applying the transform, the linear trend
during a 24-hour period was removed from each station. A
calculation was made of the slope (b) and y-intercept (a)
of the least squares line. The residuals were calculated
by subtracting the value given by a + bt from the data
values. The Fourier transform was then applied as follows:

Py = 1/M 3 pyel-2rinii/M (3.1)

where M is the total number of data points, and Pj is a
residual (detrended data point). The value of n in Equa-
tion 3.1 goes from 0 to M-1. The above transform is fairly
standard and details can be found in most time series texts

(e.g., Bloomfield, 1976).

The squared amplitudes were averaged over all the

11
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stations by frequency. Figure 3.2 is the average of the
squared amplitude versus frequency plotted by day for
pressure. The periods in hours corresponding to each
frequency and the amplitudes in mb are also shown on the
diagram. Since the Pj are real, only hali of the
frequencies need to be plotted. The amplitudes correspond-
ing to the frequencies greater than the ones represented in
Figure 3.2 and up to M = 144 are just a mirror 1image of
those plotted.

The significance of the average of the squared
amplitude versus frequency plots is in iagentifying peaks
along the general trend in order to isolate freguencies of
interest. For instance, if a peak occurs at x = 24, as 1t
does in Figure 3.2a, a wave with a period of one hour
occurred with a higher amplitude than the general trena
which is decreasing with higher frequencies. For this
research, it was decided that frequencies with periods of 8

hours or 1less needed to be isolated. In other words,

the diurnal and semi-diurnal trends would be eliminated.

3.2.3 High-Pass Filter

In order “o remove the diurnal and semi-diurnal trends
in the data, a high-pass filter was performed. This 1in-
volved setting the real and imaginary parts of amplitudes
with a frequency of 1 or 2 equal to zero. An inverse

transform is then performed using:
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Figure 3.2 Average of the squared amplitude (y) vorous
frequency (x) for (a) 4 February 1986; (b) 5 February 1Y86;
(c) 6 February 1986. (Pressure). Periods in hours and
amplitudes in mb shown in (c) also apply for the other two
days.

2222

K

13

R O Ry T S N
T AL T R N N A A A A




A o
; P, e (¢71in3)/M (3.2)
n=0
¥ ‘ ‘ :
” wnere parameters are the same as for Equation 3.1.
. Figure 3.3 represents a pressure versus time plot
' before the data have been filtered. when tne diurnal and

semi-diurnal trends are removed by the above procedures,

N
~ the resulting perturbation pressure versus time plot is
-
; snown in Figure 3.4.
~
- 3.3 Barnes Analysis
L=
g o . |
- An objective analysis (Barnes, 1964, 1973) was applied
5 to the filtered data to interpolate the cata to an evenly

spaced grid. The area encompassing the grid is shown 1in
= Figure 3.1. There are 33 grid points in the x-direction
'; and 15 in the y-direction. Spacing between grid points is
S 20 km.
)l
- The Barnes scheme calculates a grid point value using
- a distance weighted average of the surrounding station
-
» values. The scheme uses all stations within a specified
o
wa

radius of influence. The radius of influence used nere 1is
. 130 km. This influence radius was chosen so that at least
-
N 3 stations would pe included in the calcultation of each
2 grid point value. For the entire grid network, an average
;: of 8 stations was used per grid point. The weight function
‘n
- (WI) 1s ylven by:
.
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" Figure 3.3 Unfiltered pressure in millibars (y) versus

y time (x) for station 15 on 5 February 1986. Time is in 10-
. minute intervals.
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WT = exp(-RAD2/RE?) (3.3)

where RAD is the distance from a station to the grid point
and RE is a specified e-folding radius. If the e-folding
radius 1s not chosen correctly, too much or too little
smoothing of the data field will occur. The e-folding
radius of the weight function used in this study is 50 km.
Various values were tested and 50 km provided optimum
results.

After the analysis described above is applied, two
additional iterations of the Barnes analysis are performed
to regain some details smoothed by the first pass of the
scheme. This is done by linearly interpolating the gridded
values back to the station locations. The interpolated
station values are subtracted from the original station
values and the objective analysis is performed on these
differences. The gridded differences are then added to the
grid values calculated as the first-guess. Doing two
iterations of the differences gave grid values with a

reasonable amount of smoothing.
3.4 Spatial Filter

An additional spatial filter (Shapiro, 1975) was
applied to the grid values as a last step in the processing
routine. This was done in order to eliminate wavelengths

less than twice the original station spacing, which cannot

17




be resolved. 1If Ai,j represents a grid value, the first

step in the spatial filter is to calculate:

Bi,j = 0'25Ai+1,j + O'SAi,j + 0.25 Aj-1, (3.4)
where Bi,j is a new grid value. The second step is
calculated by:

Ci,j = 0'25Bi,j+1 + 0'5Bi,j + 0'25Bi,j—1 (3.5)
where Ci,j is a new and final grid value. Equation 3.4 is

a smoothing in the x-direction and Equation 3.5 is a
smoothing in the y-direction. In the case of the spatial

filter, two iterations were performed.
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4. SYNOPTIC SITUATION

Figures 4.1 through 4.3 show the surface weather, 500-
millibar height contours, highest and lowest temperatures,
and precipitation areas and amounts for 4-6 February 1986,
respectively. The surface and 500 mb maps are valid at
7:00 a.m. EST (12 GMT). Shading indicates precipitation.
The 500-millibar height contours are labeled in dekameters
above sea level. Isotherms (°C) are shown as dashed lines.
Tne highest and lowest temperature chart shows the maximum
temperature for the 12-hour period ending at 7:00 p.m. EST
(00 GMT) of the previous day and the minimum temperature
for the 12-hour period ending 7:00 a.m., EST (12 GMT). The
shaded areas on the precipitation area and amounts chart
indicate precipitation during the 24 hours ending at
7:00 a.m., EST (12 GMT) with amounts to the nearest
hundredth of an inch. Incomplete totals are underlined and
a "T" represents a trace of precipitation. Snow depth on
the ground in inches are indicated by dashed lines and is
valid at 7:00 a.m., EST (12 GMT).

On 4 February 1986 (Figure 4.1), there was a surface
low pressure center in the Kansas-Missouri area with a cold
front extending through the eastern half of Texas and a
warm front extending eastward into the Carolinas. Surface
winds were light in the GALE area and precipitation

occurred to the north of the area as indicated by both the

19
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Figure 4.1 Surface weather, 500-millibar contours, Highest
and Lowest Temperature, and Precipitation Areas and Amounts
for 7:00 am, EST, 4 February 1986. See text for details.
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surface weather map and the precipitation areas and amounts
chart. The six-hourly position of the surface front in the
GALE area on 4 February is shown in Figure 4.4a. On the
500-millibar height contour chart (Figure 4.1), the long
wave trough 1is to the west of the GALE area with winds in
the GALE area averaging 45-50 knots from the west.

On 5 February 1986 (Figure 4.2), the low has tracked
to the northeastern United States. The front in the GALE
area has moved north as is also indicated by Figure 4.4b.
Surface winds continue to be light in the GALE area and
precipitation 1is indicated. On the 500-millibar height
contour chart (Figure 4.2) the winds 1n the GALE area are
now from the southwest and have increased to 50-75 knots.

By 6 Fepruary 1986 (Figures 4.3 and 4.4c), a front is
again moving into the GALE area. There is a surface low in
Arkansas well to the west of the GALE area associated with
this front. Surface winds remain light and there is exten-
sive precipitation all along the East Coast. At 500-

millibars the winds speed in the GALE area have decreased

to 35-45 knots.
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SikiALE WEATHER Wap ;T
AN STATION WEATHER . »
AT TOK AM EST

Figure 4.2

Same as Figure 4.1, except for 5 February 1986.
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Figure 4.3 Same as Figure 4.1, except for 6 February 1986.
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Figure 4.4 Position of front in GALE area at six-hourly
intervals for (a) 4 February 1986; (b) 5 February 1986;

(c)

6 February 1986.
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5. GRAVITY WAVE CASES

Four gravity wave cases were identified during the
three day observation period from the perturbation pressure
field. For each of the cases, the perturbation pressure,
-t filtered wind field (u and v components), filtered horizon-
tal divergence, and hourly rainfall are shown (Figures 5.1-
) 5.3, 5.5-5.10, 5.12-5.15, 5.17-5.22). The contour interval
h' for the perturbation pressure is 0.2 mb. For the filtered
- 1

wind field the maximum vector is 5.0 m s - as shown next to

) each plot. The horizontal divergence (§) was calculated
L using:

3

2 5= U, v (5.1)
;: ox oy

N

[}

i where u and v are the filtered horizontal wind components.
’.

.- The derivatives in Equation 5.1 were calculated using cen-
&S

j tered finite differences. The value of the divergence for
&

. any point on the grid ‘s multiplied by 107® and is in units
-’-

) of s”l. The rainfall plot represents the total rainfall
.

o for the hour prior to the valid time. The contour interval
< is 1 mm for Cases 1, 3 and 4 and 2 mm for Case 2 (5
x February). A larger contour interval was needed for Case 2
. L

! due to a large amount of precipitation occurring on that
- day. Table 5.1 summarizes wave parameters calculated
<

. directly from the surface plots.
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5.1 Case 1, 4 February 1986, Surface Data Analysis

On 4 February 1986, a weak gravity wave pattern moved

) through the GALE grid (Figures 5.1-5.3). This was 1ini-

tially identified on the perturbation pressure plots

e e

(Figures 5.la - 5.3a) as a north-south oriented wave moving
from west to east. At 0120 GMT (Figure 5.la), there was an

axis of high pressure at the upper left of the grid and an

L e -

axis of low pressure approximately mid-way through the

grid. By 0220 GMT (Figure 5.2a), the wave had moved with a

phase speed of approximately 40 m s™l. At 0330 GMT (Figure

PR

5.3a), the pattern was not as well defined, but movement

y] continued to the east. From the perturbation pressure
plots, the wavelength was approximately 400 km, with a
period of 2.8 hours. The amplitude was between 0.25 to 0.5
mb. These are summarized in Table 5.1 and compared with

the other cases.

P ,_
ol i Sl A ¥ 4

At 0120 GMT, the wind and horizontal divergence plots

AP AF 4

(Figures 5.1 b-c) show well-defined areas of convergence
and divergence. There does appear to be movement of these
fields to the east (Figures 5.2 b-c¢ and 5.3 b-c), following
‘ the movement of the wave though the pattern becomes less
é well-defined. There also was no rainfall associated with
this occurrence of gravity waves.

From the perturbation pressure plots versus time for

PR i 8

stations 19 and 38 (Figure 5.4), the time interval for

27
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u and v components of the filtered wind in m s~ (y) versus
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February 1986. Time is in 10-minute intervals.
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gravity wave passage was between 9 and 21. These plots can
be used to make another estimate of the wave amplitude. By
halving tne value from the highest perturbation pressure to
the lowest during the observation time, a second estimate
of the amplitude is approximately 0.25 mb. Station 19
showed an increased u component of the wind while the v
component decreased (Figure 5.4). Station 38 showed more
variability in the wind, including a change in direction,
during the observation time (Figure 5.4).

Figure 5.4 shows many other larger amplitude oscilla-
tions during this day. However, during later times, there
was no evidence of spatially coherent patterns associated
with these oscillations. These may have been associated
with gravity waves with wavelengths smaller than the

station spacing.
5.2 Case 2, 5 February 1986, Surface Data Analysis

At 1500 GMT on 5 February 1986, a wave began to appear
in the upper left corner of the grid (Figure 5.5a). By
1600 GMT (Figure 5.6a), the wave was much more pronounced
and continued to move to the east. 1t remained on an
easterly track through 1700 SMT (Figure 5.7a) and by 1800
GMT (Figure 5.8a), there appeared to pe a second wave en-
tering the grid moving from the west. Both waves continued
easterly (Figures 5.%9a and 5.10a) with phase speeds from 20

to 30 ms~l ang wavelengths between 300 to 400 km
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Figure 5.9
1900 GMT.
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1)

: (Table 5.1). Periods were calculated as 2.3 - 5.6 hours
¢
$ and amplitudes ranged from 0.5 - 1.0 mb.
| %

From the wind and horizontal divergence fields

2 (Figures 5.5 b-c through 5.10 b-c) a pattern of divergence
i preceded the movement of both waves. At 1500 GMT, there
; was approximately 18 mm of rainfall measured for the prior
. hour in the northeast corner of the grid (Figure 5.5d).
V For the next 4 hours (Figures 5.6d4 - 5.9d), there were very
isolated cases of precipitation of almost insignificant

i amounts. But at 2000 GMT, approximately 46 mm of rain was
-{ measured (Figure 5.10d) though again, this might have been
P an isolated rainshower. Thus, the gravity wave may have
; triggered precipitation, but did not appear to have con-
<$ tinuous precipitation moving with it. Figure 5.11 shows
) the perturbation pressure plots for stations 8 and 18. The
? time of interest is 91 to 121. During this period, a sig-
: nificant decrease occurs as both waves pass the station.
” Amplitudes for the waves are approximately 1 mb. Both sta-
% tions showed great variability in the wind (Figure 5.11)
jg during the observation period with changes in speed and
3 direction.

:

? 5.3 Case 3, 6 February 1986, Surface Data Analysis

3 Case 3 was different from the others in that it
.§ appeared on the grid with an east-west orientation at
: approximately 1200 GMT (Figure 5.12a) and moved from the
i
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southwest to the northeast (Figures 5.13a - 5.15a). The

-1 with

phase speed was estimated to range from 30 - 40 m s
a wavelength from 200 - 300 km (Table 5.1). The period was
calculated to be 1.4 - 2.8 hours, with an amplitude of
0.5 - 1.0 mb.

The wind and horizontal divergence plots (Figures 5.12
b-c¢ through 5.15 b-c), though quite diffuse, seemed to in-
dicate divergence preceding the gravity wave. In Case 3,
precipitation continued to be measured in the bottom left
corner of the grid for tne entire period (Figures 5.12d
througn 5.15d).

On the single station plots in Figure 5.16, the obser-

vation time interval is 73 - 91. The amplitude calculated

e s AV FFF I I T I ST S I IV

from the perturbation pressure plots of both stations range
from 0.5 - 0.8 mb. Both stations also showed significant
changes 1n both wind speed and direction during that time

(Figure 5.16).
5.4 Case 4, 6 February 1986, Surface Data Analysis

Case 4 was the most well-defined of all the four
cases. As can be seen at 1800 GMT (Figure 5.17a), a linear
wave oriented north-to-south had entered the grid from the
west. As 1t continued moving eastward (Figures 5.18a
through 5.22a) with a phase speed of about 20 - 30 m sl it
did not lose mucn of 1ts linear form. The horizontal

divergence plots showed areas of convergence and divergence
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of 1900 GMT.
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Figure 5.21 Same as Figure 5.17, except for a valid time
of 2200 GMT.
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moving exactly with the wave (Figures 5.18c through 5.22c).

Once again, divergence preceded the wave. This area of
convergence and divergence 1s associated with the perturba-
tion wind which is blowing almost directly down the
pressure gradient in the vicinity of the wave (Figures

5.18c-5.22c). The hourly rainfall also showed very good

correlation with the wave motion (Figures 5.18d through
5.22d). As the wave moved east, so did the precipitation.

Stations 18 and 32 showed very significant decreases
in perturbation pressure during the time interval from
109 - 139 (Figure 5.23). Amplitudes range from 1.2 - 1.5
mb. Both stations showed the u and v component of the wind
changing in both speed and direction (Figure 5.23).

An interesting feature of this wave 1s that its struc-

ture remained almost constant as it moved across the entire

domain. 1In Cases 1 and 3, the pattern was difficult to
follow after it crossed about half of the domain. 1In Case
2 there appeared to be a group of waves which resulted in a
very complicated structure.

For all four cases, the perturbation temperature field

showed no spatially coherent patterns. The vorticity was

calculated from the filtered winds and like the perturba-
tion temperature, did not have any identifiable features

associated with it.
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6. COMPARISON OF CASE STUDY - RESULTS WITH THEORY

In order to further analyze the four gravity wave
cases, sounding data were also used. For this purpose, the
two soundings which were closest to the wave in distance
and time were chosen for each case. The location of the
sounding stations can be found in Figure 3.1. Previous
studies have shown tnat waves generated by vertical shear
instabilities tend to move with the wind speed at the level
of minimum Richardson number (Atkinson, 1981). To test
this hypothesis, the Richardson number was calculated and a
wave speed and direction were determined from the wind
speed and direction at the level of minimum Ricnardson
number. To determine if the waves might be freely
propagating, wave speeds were estimated using Equation 2.7.
Wave direction was determined directly from the surface
plots. The calculated wave speeds are then compared with
the wave speeds determined from the PAM II date (Table 5.1)

and summarized in Table 6.1.
6.1 Case 1, 4 February 1986, Sounding Data Analysis

The sounding data from FAY at 00 GMT and SSC at 00 GMT

were analyzed for Case 1 (Figure 6.1). As can be seen from
both plots of the Richardson number versus height, the
critical value of 0.25 or less for large amplitude waves

(Gedzelman and Rilling, 1978) occurs at several levels
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Figure 6.1 Sounding Data for FAY at 00 GMT (top) and SSC
at 00 GMT (bottom) on 4 February 1986. Plotted are
temperature, potential temperature, Richardson number, and

‘ wind versus height. Dashed lines indicate levels where the
Richardson number is greater than 2.0.
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on each sounding. The minimum Richardson number on the FAY
plot (Figure 6.1, top) is 0.077 at 360 mb and indicates

l with a

that a forced wave should have a speed of 23 m s~
direction out of the west-northwest. For SSC (Figure 6.1,
bottom), the minimum Richardson number is 0.051 at 900 mb.
Wave speed and direction should therefore be 6 m s7! from
the southwest. These values under the forced wave assump-
tion do not match the wave speed and direction of 40 m g1
towards the east determined from the perturbation pressure
plots (Tables 5.1 and 6.1).

Under the freely propagating wave assumption, the FAY
sounding (Figure 6.1, top) is analyzed. Since Equation 2.7
involves a two layer model, it is critical to determine

representative layers. Layer 1 in the FAY sounding

(surface to 730 mb) was capped by an inversion. The second

layer (730 - 540 mb) was determined from the potential tem-
perature versus height plot. Above 540 mb, there was a
change in stability. The average potential temperature of

each layer was calculated aiong with the average u com-
ponent of the wind and height of Layer 1 (Table 6.1). Only

the u component was needed since the wave moved in an

easterly direction. From Equation 2.7, the wave speed was
calculated as 38 m s=1 1f the second layer is chosen from
730 - 270 mb above which the potential temperature shows

more of an increase with height, the wave speed is calcu-

lated as 46 m s 1. By doing two calculations of Equation
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2.7, employing different top layers, a range of possible
wave speeds can be determined. For FAY this range is 38 -
46 m s”1,

Looking at the SSC sounding (Figure 6.1, bottom), the
first layer was from tne surface to 780 mb. There was a
weak inversion at 780 mb and the potential temperature in-
dicated a change in stability. The second layer in this
case extended from 780 - 480 mb. Though there appeared to
be a change in stability above 480 mb, it was not as easy
to determine as in the FAY sounding. Equation 2.7
parameters were determined (Table 6.1) and the wave speed

was calculated as 36 m s'1

in an easterly direction. 1If
the top of tne second layer is chosen as 250 mb, the wave
speed is calculated to be 41 m s71 (Table 6.1). This gives
a range of values of 36 - 41 m s71,

From both soundings, a freely propagating wave would
move 1in an easterly direction with a speed ranging from
36 - 46 m s~ }. From the PAM II data, the speed of 40 m s”1
falls within this range which suggests that the wave is
freely propagating, rather than forced by shear
instability. It is also interesting to note that the sur-

face wave is moving faster than the wind speed at any level

in either sounding.
6.2 Case 2, 5 February 1986, Sounding Data Analysis

For Case 2, the soundings for GSO at 12 GMT and ILM at
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21 GMT were used (Figure 6.2). The minimum Richardson
number for the GSO sounding was (.11 at 940 mb with a wind
speed out of the southwest at 13 m s~ 1, In the case of
ILM, the minimum Richardson number was 0.027 at 770 mb.

Wind speed at this level was out of the west-northwest at

A 18 m s~ 1. The wave speed was determined to be 20 - 30
. m s ! in an easterly direction from the PAM II data (Table
5.1). While the ILM speed and direction are close to the

Table 5.1 values, it is still appropriate to check the
values under the freely propagating assumption.

On the GSO sounding (Figure 6.2, top), Layer 1 was
from the surface to 920 mb wnere the stability changed.
Layer 2 was from 920 - 740 mb. At 740 mb, the temperature
remained isothermal for about 30 mb. Parameters used in
Equation 2.7 are listed in Table 6.1. The wave speed was

calculated to be 20 m s -1 jn an easterly direction.

-4

Extending the second layer to 340 mb, where the temperature
: started to increase with height, gave a wave speed of 27
ms”l.

¥ The potential temperature plot for ILM (Figure 6.2,
bottom) determined Layer 1 to extend from the surface to
s 820 mb and Layer 2 from 820 mb to 720 mb. Again, as with
the other soundings there was a change in stability. The

1

wave speed was therefore calculated as 29 m s ° in an

easterly direction. If the second layer extends to 330 mb,

1-

s'e'a'a 4 K &

tne wave speed is 43 m s~
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Assuming a freely propagating wave, the wave speed can
range from 20 - 43 m s~! when considering both soundings
(Table 6.1). This is an excellent match with the Table 5.1
values of 20 - 30 m s~ 1. As with Case 1, it is likely that
this is a freely propagating wave. However, the results
from this case are not as élear as Case 1, since the

X observed wave speed and direction are close to the wind
speed and direction near 300 mb in the GSO sounding where
the Richardson numper is less than 0.25. In addition, the
waves in this case had a much more complicated structure
than in the other cases. Thus, more than one process may

nave contributed to wave activity on this day.
6.3 Case 3, 6 February 1986, Sounding Data Analysis

On the CHS sounding at 12 GMT (Figure 6.3, top), all
values of the Richardson number were above 0.25 with the

minumum value of 0.53 at 630 mb. Wind speed at this level

1

was 12 m s~ out of the west~southwest. This was much less

than the Table 5.1 value of 30 - 40 m s~1. For the SSC
sounding at 15 GMT, the minimum Richardson number of 0.055

1

at 710 mb, gave a wave speed and direction of 5 m s * out

of the southwest. Again, this speed was significantly

below the Table 5.1 value.
Using the freely propagating wave assumption, Layer 1
of the CHS sounding (Figure 6.3, top) was from the surface

to 790 mb. This layer was capped by an 1inversion. The
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second layer extended from 790 to 600 mb, where the

stability profile changed. Since the gravity wave was
moving in a northeasterly direction, a straight average of
the u component of the wind in Layer 1 could not be used in
Equation 2.7 as in the other cases. Instead, the component
of the wind speed along the direction of wave motion was
used for U in Equation 2.7. These and the other Equation
2.7 parameters are shown in Table 6.1. In the case of the
CHS sounding, the wave speed was determined to be 37 m s71
in a northeasterly direction. If Layer 2 is extended to
280 mb, the wave speed is calculated as 44 m s71.

Layer 1 of the SSC sounding (Figure 6.3, bottom) was
from the surface to 730 mb. At this level, the potential
temperature started to decrease with height. Layer 2 was
capped by an inversion and extended from 730 mb to 600 mb.
The component of the wind speed along the direction of the
wave motion was found the same way as for the CHS sounding.
1

The wave speed was then calculated as 45 m s~ Extending

the second layer to 260 mb gave a wave speed of 58 m s7L.
Considering both stations, the wave speed ranged from
37 - 58 m s~l. The Table 5.1 value of 30 - 40 m s~1 just
falls into the lower range of the Equation 2.7 value. This
case can be called a freely propagating wave, though per-
haps a simple two layer model may not be appropriate con-

sidering the correlation of the calculated values to the

Table 5.1 range of values.
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6.4 Case 4, 6 February 1986, Sounding Data Analysis

The FAY sounding at 18 GMT and the PGV sounding at 21
GMT were used for Case 4 (Figure 6.4). The minimum
Richardson number for FAY was 0.026 at 600 mb. Wind speed

1

was 15 m s~ - out of the south-southwest. For PGV, the min-

imum Richardson number of 0.0095 at 1000 mb yielded a wind

speed of 3 m s 1

out of the southeast. These did not
correlate at all with the Table 5.1 value of 20 - 30 m s
in an easterly direction (Table 6.1).

For the freely propagating case, Layer 1 of the FAY
sounding extended from the surface to 760 mb and was capped
by an inversion. Layer 2 from 760 to 590 mb was also
capped by an inversion. Wave speeds were calculated to be
30 m s™t.  If Layer 2 was extended to 250 mb, the wave
speed increased to 42 m g1 (Table 6.1).

The PGV sounding had Layer 1 extending from the sur-
face to 900 mb and Layer 2 from 900 to 700 mb. Both layers
were capped by inversions. The wave speed was calculated
1

as 11 m s~ If the second layer extended to 250 mb, the

wave speed became 21 m s~ 1

(Table 6.1).

Both tne FAY and PGV soundings had the most well-
defined layers of all the cases. For a freely propagating
wave, the range of wave speeds were from 11 - 42 m s 1
(Table 6.1). These are in agreement with the Table 5.1

values of 20 - 30 m s~ L.
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In the above calculations, phase speeds were deter-

mined from a simple 2-layer model. To further investigate

the vertical structure of the waves, sounding data at
several time periods would be needed. For Cases 1-3, data
were available only at 12 hour intervals. However, data at
three-hourly intervals were available for both stations of
Case 4. Potential temperature was plotted versus height
for the time period from 18 GMT, 6 February 1986 to 09 GMT
on 7 February 1986 (Figures 6.5 and 6.6). The appropriate
time of wave passage is shown on both plots. The high
pressure preceding the wave is indicated by an "H" on the
time axis. The "L" indicated passage of the lowest pres-
sure as shown by the perturbation pressure plots. From the
cross-sections (Figures 6.5 and 6.6), it is possible to es-
timate the depth of the atmosphere affected by the wave.
The FAY cross-section shows no deflection of the potential
temperature above 500 mb while the PGV cross-section shows
a slight displacement between 300 and 500 mb during the
wave passade. The maximum displacement occurs between 800-
600 mb in both cross-sections. This suggests that this
wave 1s a middle-to-lower troposphere perturbation. This
provides further evidence that this wave is freely
propagating rather than resulting from shear instability

associated with the jet stream winds at upper levels.
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Figure 6.5 Potential temperature versus height at 3-hour
intervals from 18 GMT, 6 February 1986 to 09 GMT,
7 February 1986 for Fayetteville, NC (FAY).

64

LTS T N ST T TS e T - iTe e _m ‘e ‘e R R T P S . . . o -
VLA o 3 '.~|l e '- s et e e e SoAe p el x ,'x':'z:':if.-‘... ._..r.'-'\-‘_ f:_ AR



g Dol vl et v

“wy

PLENEE AN

Py

__.._
©
s AL

- ’ {-"c{n'

-

X

-
-

F»

- -

NN

il

- I‘.i
N

8 (°K) PGV
390 — 390
200 360 36%30
330
— 320
g e —
400 7
~—J
- e
300 ,/_\\ \__: 300
8oor 1 /\t_j\“

290 -

- 4 — — 290
1000 T — — T
i8Z 212 247 032 06z 09z
6 FEB 86 TFEB 86
Figure 6.6 Same as Figure 6.5, except for Greenville, NC
(PGV).
70
RSB LGN O SR TR CS L8 RN O A S D, O, X KN, 0 M s 6 R T A P N

'

L )



-~

P a2

Pl 2}

Dt T B

Uit gt aa gt g b b

Eal @B au K g8 000 ot aub puv pd O e o & Ra% B0 §a5 S Bav ha¥ fat Jai Sad A% o2 o Ba s Uk L ha -adh ‘ath 2k gl

7. SUMMARY AND CONCLUSIONS

During the Genesis of Atlantic Lows Experiment, a
tnree-day period from 4 to 6 February 1986 was analyzed to
check for the occurrence of gravity waves. Several mesos-
cale disturbances resembling gravity waves passed through
the data network during that time.

Tne diurnal and semi-diurnal trends were removed from
the high resolution pressure, temperature, and wind fields,
using a high-pass spectral filter. Higher frequencies with
periods of 8 hours or less were therefore isolated. An
opbjective analysis scheme was used to interpolate the data
onto an evenly spaced grid. A spatial filter was also
applied to remove wavelengths less than twice the original

station spacing. Using the filtered wind field, the

horizontal divergence was calculated.

Four gravity wave cases were identified from the per-
turbation pressure and horizontal divergence fields. Phase
speeds ranged from 20 - 40 m s~ with wavelengths from 200
- 400 km, and amplitudes of 0.25 - 2.0 mb. Hourly rainfall
was plotted on the data grid and analyzed for possible cor-
relation with each gravity wave case. Only for the last
case on 6 February did the precipitation follow the move-
ment of the wave. This was also the most well-defined of
all the four cases.

Furtner analysis was done using sounding data.
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Assuming a simple two-layer model, 1t appeared that Cases
1, 3 and 4 were freely propagating versus forced by an
upper level disturbance. For Case 2, several different
processes may have contributed to wave activity.

If the waves were freely propagating, this implies
that their source region was outside of the analysis region
of the PAM stations. Cases 1, 2 and 4 were oriented from
north to south and moved from the west to the east. This
orientation of the waves was perpendicular to the warm
front located in the northern data field, thus making it
unlikely that they were caused by that front. The orienta-
tion of the waves in Cases 1, 2 and 4 suggests that the
Appalachian Mountains may have played a role in their
formation. Though the waves were analyzed as freely
propagating, the cold front and surface cyclone to the west
of the mountains may also be linked to the wave formation.
Case 3 was oriented from the west to the east and moved in
a northeasterly direction suggesting a different source
mechanism than the other cases. Case 3 was analyzed to be
a freely propagating wave though there was a possibility
that it might have been forced. An upper level disturbance
to the south of the wave might have been the forcing
mechanism. There also was thunderstorm activity in north-
ern Florida occurring at the time.

Although three of the four cases did not have

precipitation patterns moving with them, there were
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convergence and divergence patterns associated with the
waves, especially for Cases 2 and 4. Gravity waves may

then be a triggering mechanism for precipitation in regions

far from the source regions of the waves.

Furtner analysis of gravity wave phenomenon should be
done employing more cases than presented here. Also, by
using a tnree-or-four-layer model, where appropriate, a
more accurate determination can be made of wave speeds and
directions. A two-layer model can be used where there are

well-defined layers as in Case 4.
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